

Sydney Girls High School

2016

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading Time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- The Mathematics Reference Sheet is provided.
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I

Pages 3 - 6

10 Marks

- Attempt Questions 1 10
- Answer on the Multiple Choice answer sheet provided
- Allow about 15 minutes for this section

Section II

Pages 7 - 15

90 Marks

- Attempt Questions 11 16
- Answer on the blank paper provided
- Begin a new page for each question
- Allow about 2 hour and 45 minutes for this section

	THIS IS A TRIAL PAPER ONLY
Name:	It does not necessarily reflect the format or the content of the 2016 HSC Examination Paper in this subject.
Teacher:	

Section I

10 marks

Attempt Questions 1–10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

- 1. The equation $24x^3 12x^2 6x + 1$ has roots α , β and γ . What is the value of α if $\alpha = \beta + \gamma$?
 - (A) $-\frac{1}{2}$
 - $(B) \qquad \frac{1}{4}$
 - (C) $\frac{1}{2}$
 - (D) 1
- 2. Find $\int \frac{dx}{x^2 4x + 13}$.
 - (A) $\frac{1}{9} \tan^{-1} \left(\frac{x-2}{9} \right) + C$
 - (B) $\frac{1}{9} \tan^{-1} \left(\frac{x-2}{3} \right) + C$
 - (C) $\frac{1}{3} \tan^{-1} \left(\frac{x-2}{9} \right) + C$
 - (D) $\frac{1}{3} \tan^{-1} \left(\frac{x-2}{3} \right) + C$
- 3. Find the values of arg(z), given that z represents the solutions to the equation $z^2 = 1 + i$.
 - (A) $\frac{\pi}{8}$ and $\frac{15\pi}{8}$
 - (B) $-\frac{3\pi}{4}$ and $\frac{\pi}{4}$
 - (C) $-\frac{\pi}{8}$ and $\frac{7\pi}{8}$
 - (D) $-\frac{7\pi}{8}$ and $\frac{\pi}{8}$

4. A disc of radius 4 cm is spinning such that a point on the circumference is moving with a speed of 80 cm/min.

What is the angular speed of the disc (in revolutions per minute)?

- (A) 320 rpm
- (B) 20 rpm
- (C) $\frac{10}{\pi}$ rpm
- (D) $\frac{160}{\pi}$ rpm
- 5. The hyperbola $16x^2 9y^2 = 144$ has foci at S(5, 0) and S'(-5, 0).

What are the equations of the directrices?

(A)
$$y = \frac{9}{5} \text{ and } y = -\frac{9}{5}$$

(B)
$$x = \frac{9}{5} \text{ and } x = -\frac{9}{5}$$

(C)
$$y = \frac{12}{5}$$
 and $y = -\frac{12}{5}$

(D)
$$x = \frac{12}{5}$$
 and $x = -\frac{12}{5}$

6. In the diagram below, *O* is the centre of the circle.

Given $\angle OAB = 20^{\circ}$ and $\angle OCB = 52^{\circ}$, what is the size of $\angle ABC$?

- (A) 32
- (B) 49
- (C) 56
- (D) 64

7. The horizontal base of a solid is the circle $x^2 + y^2 = 1$. Each cross section taken perpendicular to the x axis is a right-angled isosceles triangle with one of its shorter sides in the base of the solid. Which of the following is an expression for the volume of the solid?

(A)
$$\frac{1}{2} \int_{-1}^{1} (1-x^2) dx$$

(B)
$$\int_{-1}^{1} \left(1 - x^2\right) dx$$

(C)
$$\frac{3}{2} \int_{-1}^{1} (1-x^2) dx$$

(D)
$$2\int_{-1}^{1} (1-x^2) dx$$

8. The Argand diagram below shows the triangle ABC where A represents the complex number z = a + ib (where a and b are real), B represents the complex number ω and C represents 4 + 8i.

Given triangle ABC is isosceles and $\angle ABC = 90^{\circ}$, which of the following represents ω ?

(A)
$$\frac{(a-b-4)+i(a+b+4)}{2}$$

(B)
$$\frac{(a+b+4)-i(a+b+4)}{2}$$

(C)
$$\frac{(a+b+12)+i(a+b+4)}{2}$$

(D)
$$\frac{(a-b+12)+i(a+b+4)}{2}$$

9. Tom and Joanne each choose a **different** number at random from the integers 1, 2, 3,.....,20.

What is the probability that the sum of the numbers is 20?

- $(A) \qquad \frac{1}{2}$
- (B) $\frac{1}{20}$
- (C) $\frac{1}{19}$
- (D) $\frac{9}{190}$
- 10. Given $\frac{1}{r(r+1)(r+2)} = \frac{1}{2} \left[\frac{1}{r(r+1)} \frac{1}{(r+1)(r+2)} \right]$, find

$$\lim_{N\to\infty}\sum_{n=1}^N\frac{1}{n(n+1)(n+2)}.$$

- (A) 1
- (B) $\frac{1}{2}$
- (C) $\frac{1}{4}$
- (D) $\frac{2}{9}$

Section II

Total 60 marks

Attempt Questions 11–16

Allow about 2 hour and 45 minutes for this section

Answer all questions, starting each question on a new page.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

Marks

1

1

3

Start each question on a NEW sheet of paper.

- (a) Consider the complex numbers z = 2 + 5i and w = 3i.
 - (i) Express z + w in the form a + ib, where a and b are real.
 - (ii) Evaluate |zw|.
 - (iii) Find the value of $arg(w^{71})$.

(b) Let α , β and γ be the roots of the equation

$$(3+i)z^3 + (2i-19)z^2 + (5+2i)z - 3i = 0.$$

Find the value of $\alpha + \beta + \gamma$, expressing your answer in the form $\alpha + ib$

where a and b are real.

(c) Find:

(i)
$$\int \frac{x}{x^2 + 6x + 25} dx$$

$$(ii) \qquad \int \frac{e^{-2x}}{e^{-x} + 5} dx \tag{3}$$

- (d) (i) Expand and simplify $\sin(A+B) + \sin(A-B)$.
 - (ii) Hence, find $\int \sin 10x \cos 7x dx$.

End of Question 11

Question 12 (15 marks)

Marks

Start each question on a NEW sheet of paper.

(a) Sketch the region on the Argand diagram representing the intersection of |z| < 5 and $|z + \overline{z}| \ge 2$.

3

(b) The graph of the function y = f(x) is shown below.

Sketch the following curves, showing any key features.

(i)
$$y = [f(x)]^2$$

2

(ii)
$$y = \ln[f(x)]$$

2

(iii)
$$|y| = \frac{1}{f(x)}$$

3

(c) One end of a light inextensible string of length 3 metres is fastened to a fixed point O on a smooth horizontal table. Masses of 3 kg and 5 kg are attached to the string at A and B respectively such that OA: OB = 3: 1. Note that A is at the end of the string. Given that the system rotates about O at 2π radians per second, find in simplest form the ratio of the tensions in the string, $T_{OB}: T_{AB}$.

3

Question 12 continues on the next page.

(d) In the diagram below, AN bisects $\angle ABC$. Using trigonometry, prove that $\frac{AB}{BN} = \frac{AC}{CN}$.

2

End of Question 12

Start each question on a NEW sheet of paper.

- (a) Find the acute angle between the tangent to the curve $x^2 + xy + 2y^2 = 28$ at the point (-2, -3), and the line y = x. Give your answer to the nearest degree.
- (b) Let α , β and γ be the roots of the equation

$$x^3 - 5x^2 + 7x - 18 = 0$$

- (i) Find the cubic equation that has roots $4 + \alpha^2$, $4 + \beta^2$ and $4 + \gamma^2$.
- (ii) Hence, find the value of $\alpha^2 + \beta^2 + \gamma^2$.
- (c) The area bounded by the parabola $x^2 = 20y$ and the line y = 5 (as shown below) is rotated about the line y = 20. Find the volume of the solid formed.

- (d) Consider the polynomial $P(x) = 8x^4 + 28x^3 + 18x^2 27x 27$.
 - (i) Find all zeros of P(x), given that it has a zero of multiplicity 3.
 - (ii) Hence, sketch y = P(x) without the use of calculus.

1

2

End of Question 13

2

Start each question on a NEW sheet of paper.

- (a) Find the parametric equations which represent the ellipse that passes through (8,3) and has foci at $(-5\sqrt{3},0)$ and $(5\sqrt{3},0)$.
- (b) The variable points $P\left(cp,\frac{c}{p}\right)$ and $Q\left(cq,\frac{c}{q}\right)$ lie on the hyperbola $xy=c^2$ as shown in the diagram below.

The tangents to the hyperbola at P and Q intersect at the point T.

M is the midpoint of PQ.

The equation of the tangent at *P* is $x + p^2y = 2cp$.

- (i) Show that the coordinates of T are $\left(\frac{2cpq}{p+q}, \frac{2c}{p+q}\right)$.
- (ii) If O is the origin, show that O, T and M are collinear.
- (iii) Find an expression for q in terms of p if T, M and S are collinear, where S is a focus of the hyperbola.

Question 14 continues on the next page.

2

(c) (i) By the use of De Moivre's Theorem, or otherwise, show that

$$\tan 4\theta = \frac{4\tan\theta - 4\tan^3\theta}{\tan^4\theta - 6\tan^2\theta + 1}.$$

(ii) Hence, find expressions for the roots of $x^4 + 4x^3 - 6x^2 - 4x + 1 = 0$.

End of Question 14

Start each question on a NEW sheet of paper.

(a) Consider $I_n = \frac{1}{n!} \int_0^1 x^n e^{-x} dx$, where $n \ge 0$.

2

- (i) Show that $\frac{1}{n!} = e(I_{n-1} I_n)$.
- (ii) Find the value of I_4 .
- (b) Evaluate $\int_3^4 \frac{16 \, dx}{16 (x 3)^4}$.

- 4
- (c) (i) Show that the equation $x^3 + 5x 20 = 0$ has exactly one real root, $x = \alpha$, and that $2 < \alpha < 4$.
- 2
- (ii) If $x = \beta$ is one of the other roots of the equation $x^3 + 5x 20 = 0$, show that
- 3

$$\sqrt{5} < |\beta| < \sqrt{10} .$$

(d) Solve $\sin 2x + 1 = \sin x + \cos x$ for $0 \le x \le 2\pi$.

2

End of Question 15

3

Start each question on a NEW sheet of paper.

(a)

- (i) Evaluate $\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} dx$ using the substitution $x = \sin \theta$.
- (ii) The area bounded by $y = \sin^{-1} x$, the x -axis and the line x = 1 (as shown below) is rotated about the y -axis. Use the method of cylindrical shells to determine the volume of the solid generated.

Question 16 continues on the next page.

4

(b)

(i) Show that
$$\sin \frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$$
.

(ii) It can also be proven that :

$$\cos\frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$$
 and $(x - iy)^3 = x^3 - 3xy^2 + i(y^3 - 3x^2y)$.

(Do NOT prove these results.)

Using the results above, or otherwise, find all real numbers x and y satisfying:

$$\begin{cases} x^3 - 3xy^2 = 1 \\ y^3 - 3x^2y = 1 \end{cases}$$

Express your answers in surd form.

- (c) A cycling track contains a bend that is part of a circle of radius 12 m. At the bend, the track is banked at an angle 30° to the horizontal. A bicycle of mass $m \log t$ kg travels around the bend at constant speed v. Assume that the forces acting on the bicycle are the gravitational force mg, a sideways frictional force F and a normal reaction N to the track.
 - (i) Resolve the forces acting on the bicycle into their horizontal and vertical components.
 - (ii) The maximum frictional force (up or down the track) is at most 1/10 of the normal reaction force.
 Find the range of speeds at which the bicycle can travel safely around the

bend. Give your answers correct to 2 decimal places. (Assume that the value of g is $9.8\,\mathrm{ms}^{-2}$.)

End of paper

Sample 2+4=?

completely.

new answer.

Sydney Girls High School

Mathematics Faculty

Multiple Choice Answer Sheet 2016 Trial HSC Mathematics Extension 2

Select the alternative A, B, C or D that best answers the question. Fill in the response oval

(A) 2 (B) 6 (C) 8 (D) 9

 $A \bigcirc B \bigcirc C \bigcirc D \bigcirc$

 $A \bullet B \not\subset C O$

If you think you have made a mistake, put a cross through the incorrect answer and fill in the

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word <i>correct</i> and drawing an arrow as follows:						
		A 💢	В	C \bigcirc	D 🔿	
Studer	ıt Number <u>:</u>	Α.	3~EN	<u>RS - </u>		
Compl	etely fill the	response	oval repr	esenting	the most correct	answer.
	1. A O	В	CO	DC		
	2. A 🔾	ВО	$C \subset$) D		
	3. A 🔾	ВО	$C \subset$	D C		
	4. A 🔾	ВО	C	D C		
	5. A 🔾	В	$C \subset$) DC		
	6. A 🕥	ВО	$C \subset$) DC		
	7. A 🔾	ВО	$C \subset$	D C		
	8. A 🔾	ВО	$C \subset$	D 6	3	
	9. A 🔾	ВО	$C \subset$	D •		
	10.A 🔾	ВО	C 🌑	D C		

Many students missed 2 5-1

 $2n \ge 2$ or $2n \le -2$ $x \ge 1$ $x \le -1$

Thoug students
forgot the vertical
asymptote

$$T_{AB} = 3 \times 3 \times (2\pi)^2$$
$$= 3(\pi^2)$$

$$T_{OB} - T_{AB} = \int_{X} |\chi(2\pi)|^2$$

$$= 20\pi^2$$

[As ABH and ANC]

[are not similar _

Q13

(a)
$$\chi^2 + \chi_y + 2y^2 = 28$$

$$2x + y + xy' + 4yy' = 0.$$

 $y'(x+4y) = -2x-y$

$$y' = \frac{-2x - y}{x + 4y}.$$

At
$$(-2_1-3)$$
 $m_{\tau} = \frac{4+3}{2}$

$$m_{T} = -\frac{1}{2}$$
.

Many student

not using the formula for angle between lines correctly.

$$tan\theta = \left[-\frac{1}{2} - \frac{1}{1 + (-\frac{1}{2})(1)} \right]$$

$$= \begin{vmatrix} -\frac{3}{2} \\ -\frac{1}{2} \end{vmatrix}$$

(b) (i) X=d, B, Y Let u= x+4. So x= Ju-4 Sub into x3-5x2+7x-18=10 (u-4) Vu-4-5(u-4)+7 Ju-4-18=0. Ju-4 (4+3) = 18-6u-20. $(u-4)(u+3)^2 = (5u-2)^2$ $(\mu-4)(\mu^2+6\mu+9)=25\mu^2-20\mu+4$ $u^3 + 6u^2 + 9u - 4u^2 - 24u - 36 = 25u^2 - 20u + 4$ $u^3 - 23u^2 + 5u - 40 = 0$ (ii) Sum of roots x2+B2+12=23 12+B2+12=11

> Many students lost marks due to poon algebra Skills.

SV=(TR2-Tr2)8x =TT((20-y)2-152) (x. $=TT(175-40y+y^2)\delta x$ Intersect $\chi^2 = 20y = T(175 - 2x^2 + \frac{3c^4}{400}) dx$ and y = 5. $x^1 = 100$ x=±10. V= 8x->0 \(\tau \) \($= 2\pi \int_{0}^{10} (1.75 - 2x^{2} + \frac{x^{4}}{400}) dx.$ $= 2T \left[175x - \frac{2x^3}{5} + \frac{x}{2000} \right] 0$ =2T(1750-2000+50)= 6800 tr units3

Most student attempted to use the shells method for this grestion. Only a tem were able to do that correctly.

(d)
$$P(x) = 8x^4 + 28x^3 + 18x^2 - 17x - 27$$

(i) $P(x) = 32x^3 + 84x^2 + 36x - 27$
 $P''(x) = 96x^2 + 168x + 36$
Possible: roots where $P''(x) = 0$.
 $8x^2 + 114x + 3 = 0$
 $(8x + 12)(8x + 7) = 0$.
 $8x^2 + 12(8x + 7) = 0$.
 $8x^2 + 14x + 3 = 0$
 $(2x + 3)(4x + 1) = 0$.
 $8x^2 + 14x + 3 = 0$
 $8x^2 + 14x$

Q14
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 passes through $(8,3)$
 $\frac{64}{a^2} + \frac{9}{b^2} = 1$ ①

Also $b^2 = a^2 (1 - e^2)$
 $b^2 = a^2 - a^2 e^2$ ($ae = 5\sqrt{3}$)
 $a^2 = b^2 + 75$ ②

Subs ② into ①: $\frac{64}{b^2 + 75} + \frac{9}{b^2} = 1$
 $64b^2 + 9b^2 + 675 = b^4 + 75b^2$
 $b^4 + 2b^2 - 675 = 0$
 $ext{Let } v = b^2$
 $v^2 + 2v - 675 = 0$
 $v = 27 (\text{Reject})$
 $v = 25 \implies b = 5 (b > 0)$
 $a^2 = 75 + b^2$
 $a^2 = 100$
 $a = 10$

Thus the Equation of the Ellipse in the parametric form:

$$x = 10\cos\theta$$

$$y = 5\sin\theta$$

Alternatively: PS + PS' = 2a can also be used to find a. Some students wrote $\frac{2^2}{a^2} - \frac{y^2}{b^2} = 1$ as the Eq of the Ellipse which gave the wrong values for a and b. Q14 b) Eq of the tangent at $P: x^2 + p^2y = 2cp$ (1) Eq - --- at $Q: x^2 + q^2y = 2cq$ (2) $y = \frac{2C}{p+q}$ substitute O $x = 2cp - p^2 \left(\frac{2c}{p+q}\right)$ $\chi = \frac{2 c pq}{p+q} \sqrt{\frac{2}{p+q}}$ $T\left(\frac{2cpq}{p+q}, \frac{2c}{p+q}\right)$ Most students ii) M, mid-polat of PQ did well in these two $M\left(\frac{CP+Cq}{2},\frac{\sqrt{p+\sqrt{q}}}{2}\right)$ parts. $M\left(\frac{C(P+q)}{2}\right)\frac{C(P+q)}{2Pq}$ If O, T, M are collinear if mOT = mTM $mOT = \frac{2c/p+q}{2cpq} = \frac{1}{pq}$ $MTM = \frac{C(p+q)}{2pq} - \frac{2C}{p+q}$ $\frac{C(p+q)}{2} = \frac{2cpq}{p+q}$

-- O, T, M are Collinear.

Divide by the solution of the solution of the billing focus point
$$s(\sqrt{2}c, \sqrt{2}c)$$
 lies on TM

Eq of TM : $y - \frac{2c}{p+q} = \frac{1}{pq}\left(x - \frac{2cpq}{p+q}\right)$
 $\sqrt{2}c - \frac{2c}{p+q} = \frac{1}{pq}\left(\sqrt{2}c - \frac{2cpq}{p+q}\right)$
 $2\sqrt{c} - \frac{2c}{p+q} = \frac{\sqrt{2}c}{pq} - \frac{2c}{p+q}$
 $2\sqrt{c} pq = \sqrt{2}c$
 $pq = 4$
 $pq = 4$

QIH

$$c(ii) \quad tan q\theta = \frac{4tan\theta - 4tan^3\theta}{tan^4\theta - 6tan^2\theta + 4}$$

$$let \quad \chi = tan\theta$$

$$\frac{4x - 4x^3}{x^4 - 6x^2 + 1} = 1$$

$$0R \quad x^4 + 4x^3 - 6x^2 - 4x + 1 = 0$$

$$0R \quad tan 4\theta = 1$$

$$A\theta = \frac{\pi}{4} + k\pi$$

$$\theta = \frac{\pi}{4} \left(\frac{1 + 4k}{16}\right)$$

$$\chi = tan \left[\frac{(4x + 1)\pi}{16}\right]$$

Where $k = 0$, $tan \frac{9\pi}{16}$, $tan \frac{13\pi}{16}$

A number of students could not deduce

A number of Students could not deduce tan 40 = 1 or could not provide the final solutions for oc.

$$\begin{array}{lll}
|S(a)(i)| & \text{Lat } n = x^{n} & \text{V} = e^{-x} \\
|x| & = n \times n^{-1} & \text{V} = -e^{-x} \\
|x| & = -1 & \text{I} & \text{I} - x^{n} = -x^{-1} & \text{I} + n & \text{I} \times x^{n-1} = -x^{-1} & \text{I} \\
& = -1 & \text{I} \\
& = -1 & \text{I} \\
& = -1 & \text{I} &$$

(ii)
$$I_{4} = I_{3} - \frac{1}{e \cdot 4!}$$
 $I_{3} = I_{1} - \frac{1}{e \cdot 2!}$ $I_{1} = I_{0} - \frac{1}{e}$

$$= I_{3} - \frac{1}{24e}$$

$$= I_{1} - \frac{1}{6e}$$

$$= I_{1} - \frac{1}{2e}$$

$$= I_{1} - \frac{1}{2e}$$

$$= I_{1} - \frac{1}{2e}$$

$$= I_{1} - \frac{1}{2e}$$

$$= I_{2} - \frac{1}{2e}$$

$$= I_{1} - \frac{1}{2e}$$

$$= I_{2} - \frac{1}{2e}$$

$$= I_{3} - \frac{1}{2e}$$

$$= I_{2} - \frac{1}{2e}$$

$$= I_{3} - \frac{1}{2e}$$

$$= I_{3} - \frac{1}{2e}$$

(h) Let
$$u = x-3$$

$$\frac{du}{dx} = 1$$

$$du = dx$$
when $x = 4$, $u = 1$

$$11 \quad x = 3$$
, $u = 0$

$$\int_{-16}^{1} du \int_{-16}^{16} du \int_{-16$$

$$\int_{0}^{1} \frac{16}{16-10^{4}} du \qquad \left[\text{The formative of this 5 not a log function} \right]$$

$$= \int_{0}^{1} \left(\frac{2}{4-10^{2}} + \frac{2}{4+10^{2}} \right) du$$

$$= \frac{1}{2} \int_{0}^{1} \left(\frac{1}{2-10^{2}} + \frac{1}{2+10^{2}} \right) du + \int_{0}^{1} \frac{2}{4+10^{2}} du$$

$$= \frac{1}{2} \left[-log(2-10) + log(2+10) \right]_{0}^{1} + \left[ten^{-1} \frac{1}{2} \right]_{0}^{1}$$

$$= \frac{1}{2} \left(-log(1+log(3+log(2+10)) + ten^{-1} \right)_{1}^{1}$$

$$= \frac{1}{2} log(3+ten^{-1})_{2}^{1}$$

(() (i)
$$y' = 3x^2 + 5$$
 $3x^2 + 5 = 0$ has not real solutions

in turning fronts

 $1 + 5x^2 - 2c = 2 - 2$
 $1 + 5x^2 - 2c = 6 + 2c = 6 + 2c = 2 +$

$$2 < \frac{20}{|\beta|^2} < 4$$

(d)
$$2min * * con * + sii^2 * + ros^2 * = sii * n + ros *$$

$$(min + ros *)^2 = sin * n + ros *$$

メコロ、生、れて

